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  Abstract  

 
 Biorthogonal spline wavelet transform method is proposed for 

the numerical solution of integral and integro-differential 
equations. It uses biorthogonal spline wavelet filter coefficients 
matrix as a prolongation and restriction operators. The 
performance of the proposed method is better than the 
existing ones in terms of super convergence with low 
computational time. Some of the illustrative examples are 
demonstrate through error analysis. 
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1. Introduction 

      Integral and integro-differential equations arise naturally in many applications in various fields 

of science and engineering and also have been studied extensively both at the theoretical and practical 

level. Specific applications of integral and integro-differential equations can be found in the 

mathematical modelling of spatiotemporal developments, epidemic modelling [1] and various 

biological and physical problems. Analytical solutions of integral and integro-differential equations, 

however, either do not exist or it is often hard to find. It is precisely due to this fact that several 

numerical methods have been developed for finding approximate solutions of integral and integro-

differential equations [2-4]. 

       Multigrid method is well known among the fastest solution method. Particularly, for elliptic 

problems, they have been proved to be highly accurate. Vectors from fine grids are transferred to 

coarser grids with Restriction operator, while vectors are transferred from coarse grids to the finer 

grids with a Prolongation operator. An introduction of multigrid method is found in Wesseling [5]. 

Multigrid Tutorial (Briggs [6] and Trottenberg et al. [7]), is helpful to get the basic ideas of multigrid 

techniques. The multigrid method is largely applicable in increasing the efficiency of iterative 

methods used to solve large system of algebraic equations resulted from discretization of the 

differential equations and integral equations are applicable to solve numerically. Multigrid method 
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has been applied for the numerical solution of different types of integral equations. Hackbusch [8, 9] 

given the multigrid techniques and the integral equations from both theoretical and computational 

points of views. Schippers [10, 11] used multigrid methods for boundary integral equations. Gáspár 

[12] has given a new approach a fast multigrid solution of boundary integral equations. Lee [13] has 

solved multigrid method for nonlinear integral equations. Paul [14], applied the multigrid algorithm 

for solving integral equations.  

      Wavelet analysis is a new branch of mathematics and widely applied in signal analysis, image 

processing and numerical analysis etc. The wavelet methods have proved to be very effective and 

efficient tool for solving problems of mathematical calculus. In recent years, these methods have 

attracted the interest of researchers of structural mechanics and many papers in this field are 

published. In most papers the Daubechies wavelets are applied. These wavelets are orthogonal, 

sufficiently smooth and have a compact support. Wavelet methods solve system of equations with 

faster convergence and less computation cost. Recently, many authors (De Leon [15], Bujurke et al. 

[16-18], Avudainayagam & vani [19]) have worked on wavelet multigrid methods for the solution 

of differential equations. Shilralashetti et al. [20] has proposed the wavelet based decoupled method 

for the investigation of surface roughness effects in elastohydrodynamic lubrication problems using 

couple stress fluid. Also, Shilralashetti et al. [21] have introduced a new wavelet based full-

approximation scheme for the numerical solution of nonlinear elliptic partial differential equations. 

Wang et al. [22] have applied a fast wavelet multigrid algorithm for the solution of electromagnetic 

integral equations.  

       Biorthogonal wavelet basis were introduced by Cohen-Daubechies-Feauveau in order to obtain 

wavelet pairs that are symmetric, regular and compactly supported. Unfortunately, this is 

incompatible with the orthogonality requirement that has to be dropped altogether. Biorthogonal 

wavelets build with splines are especially attractive because of their short support and regularity. So 

it is called a “Biorthogonal Spline Wavelets” [23]. In the biorthogonal case, rather than having one 

scaling and wavelet function, there are two scaling functions  ,  , that may generate different 

multiresolution analysis, and accordingly two different wavelet functions   ,  . But biorthogonal 

wavelet based multigrid schemes are found to be effective [24]. Biorthogonal wavelet based 

multigrid schemes provide some remedy in such challenging cases. Sweldens [25] highlighted 

effectively the construction of biorthogonal wavelet filters for the solution of large class of ill-

conditioned system. The DBSWT matrix designed and implemented by Ruch and Fleet [26] for 

decomposition and reconstruction of the given signals and images. Using these decomposition and 

reconstruction matrices we introduced restriction and prolongation operators respectively in the 

implementation of biorthogonal spline wavelet transform method (BSWTM). In this paper, we 

applied biorthogonal spline wavelet transform method (BSWTM) for the numerical solution of 

integral and integro-differential equations. Thus, the proposed method can be applied to a wide range 

of science and engineering problems. 

The organization of this paper is as follows. In section 2, properties of biorthogonal spline 

wavelets are discussed. In Section 3, method of solution is discussed. In section 4, method of 

implementation of numerical experiments and results. Finally, conclusion of the proposed work is 

given in section 5. 

 

2. Properties of Biorthogonal Wavelets 

Discrete Biorthogonal Spline wavelet transform (DBSWT) matrix: 

Let us consider the (5, 3) biorthogonal spline wavelet filter pair, 

We have 

 

and 

 

To form the highpass filters, We have 

1 0 1

2 2 2
( , , ) , ,

4 2 4
c c c c

 
    

 

2 1 0 1 2

2 2 3 2 2 2
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The highpass filter pair d and  for the (5, 3) biorthogonal spline filter pair. 

and  

In this paper, we use the filter coefficients which are,  

Low pass filter coefficients: and High pass filter coefficients:  for 

decomposition matrix. 

Low pass filter coefficients: and High pass filter coefficients: 

 for reconstruction matrix.   

The matrix formulation of the discrete biorthogonal spline wavelet transforms (DBSWT) plays an 

important role in both biorthogonal spline wavelet transforms method (BSWTM) and biorthogonal 

Spline wavelet full-approximation transform method (BSWFATM) for the numerical computations. 

As we already know about the DBSWT matrix and its applications in the wavelet method and is 

given in [26] as, 

Decomposition matrix: 

   

Reconstruction matrix: 

             

Biorthogonal Spline Wavelet operators:  

Using the above matrices, we introduced biorthogonal spline wavelet restriction and biorthogonal 

spline wavelet prolongation operators respectively. i.e.,  

Biorthogonal spline wavelet restriction operator: 

       

 

1 1( 1) and ( 1)k k

k k k kd c d c    

d
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 Biorthogonal spline wavelet prolongation operator: 

                                 .

 

Modified Discrete Biorthogonal Spline wavelet transform (MDBSWT) matrix: 

Here, we developed MDBSWT matrix from DBSWT matrix in which by adding rows and columns 

consecutively with diagonal element as 1, which is built as, 

New decomposition matrix: 

  

New reconstruction matrix: 

               

Modified Biorthogonal Spline wavelet operators:  

Using the above matrices, we introduced a new biorthogonal spline wavelet restriction and 

prolongation operators respectively as, 

New biorthogonal spline wavelet restriction operator: 

    

2

0 1 1

0 1 2 3 1

1 0 1

1 0 1 2 3

1 0 1

1 0 1 2 3

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0
N

N

T

P

c c c

d d d d d

c c c

BSWT d d d d d

c c c

d d d d d














 
 
 
 
 
 
 
 
 
 
 
 

1 0 1 2 2

1 2 0

1 2 2 1 0

0 1 2

0 0 0 0 0 0 0 0

0 1 0 0 ... ... . . . 0 0 0 0 0

0 0 ... ... 0 0 0 0

0 0 0 1 0 0 ... ... 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1

W

N N

c c c c c

d d d

MD

c c c c c

d d d

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 1 1

0 1 2 3 1

1 0 1

2 3 1 0 1

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

W

N N

c c c

d d d d d

MR

c c c

d d d d d











 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 0 1 2 2

1 2 0

2 1 0 1 2

0 1 2

0 1 2
2

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

R

N
N

c c c c c

d d d

MBSWT
c c c c c

d d d

d d d

 

 



 
 
 
 
 
 


 
 
 
 
 
 
 

http://www.ijesm.co.in/


 ISSN: 2320-0294Impact Factor: 6.765  

96 International Journal of Engineering, Science and Mathematics 

http://www.ijesm.co.in, Email: ijesmj@gmail.com 

 

 New biorthogonal spline wavelet prolongation operator: 

                           

3. Biorthogonal Spline Wavelet Transform Method (BSWTM) of solution 

In this section, we approximate solution containing some error. There are many approaches to 

minimize the error. Some of them are multigrid (MG) method, biorthogonal spline wavelet transform 

method (BSWTM) and modified biorthogonal spline wavelet transform method (MBSWTM).  

Consider the Volterra integral equations of the second kind, 

0

( ) ( ) ( , ) ( )

t

u t f t k t s u s ds  
 

0 , 1,t s     (3.1) 

Consider the Fredholm integral equation of the second kind,  
1

0

( ) ( ) ( , ) ( )u t f t k t s u s ds  
 

0 , 1,t s       (3.2) 

where ( )f t  and the kernels ( , )k t s are assumed to be in L2(R) on the interval 0 , 1.t s  After 

discretizing the integral equation through the trapezoidal discretization method (TDM) [27], we get 

system of algebraic equations. Through this system we can write the system as  

i.e.,   ( )I K u f Au b                                                    (3.3) 

where ( )A I K   is N N  coefficient matrix, b  is 1N   matrix and u  is 1N   matrix to be 

determined. 

Solving the system of equation (3.3) through the iterative method, we get the approximate solution 

v  of u . i.e. u e v v u e     , where e  is ( 1N   matrix) error to be determined. 

Now we are discussing about the method of solution as follows. 

From equation (3.3), we get the approximate solution v  of u . Now we find the residual as 

                    1 1 1N N N N N
r b A v   

                                               (3.4) 

We reduce the matrices in the finer ( 2th JN  ) level to coarsest level using Wavelet Restriction 

operator ( RBSWT ) and then construct the matrices back to finer level from the coarsest level using 

Wavelet Prolongation operator ( PBSWT ). 

From (3.4), 

                                                       
   /2 1 /2 1N R N N N

r BSWT r  
                                           (3.5) 

and                                                  
/2 /2 /2 /2R PN N N N N N N N

A BSWT A BSWT
   

  

Residual equation becomes,      
/2 /2 /2 1 /2 1N N N N

A e r
  

  

where 
/2 1Ne 

  is to be determined. Solve 
/2 1Ne 

 with initial guess ‘0’. 

From (3.5), 

                                                 /4 1 /4 /2 /2 1N R N N N
r BSWT r  

                                              (3.6) 

and                                             
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Solve 
/4 1Ne 

 with initial guess ‘0’. 

Continue the procedure up to the coarsest level, we have, 

                                          

   1 1 1 2 2 1Rr BSWT r  
                                                               (3.7) 

and                                                       
1 1 1 2 2 2 2 1R PA BSWT A BSWT
   
  

Residual equation is,      
1 1 1 1 1 1

A e r
  

  

Solve 
1 1e 

 exactly. 

Now correct the solution  

     2 1 2 1 2 1 1 1Pu e BSWT e   
   

Solve      
2 2 2 1 2 1

A u r
  

  with initial guess 2 1u  . 

Correct the solution  

     4 1 4 1 4 2 2 1Pu e BSWT u   
   

Solve      
4 4 4 1 4 1

A u r
  

  with initial guess 4 1u  . 

Continue the procedure up to the finer level,  

Correct the solution  

     1 1 /2 /2 1N PN N N N
u v BSWT u   

   

Solve      
1 1N N N N

A u b
  

  with initial guess 1Nu  . 

1Nu   is the required solution of system (3.3). 

Similarly, the same procedure is applied for modified biorthogonal spline wavelet transform 

method (MBSWTM) as explained in the above. Here, we use the modified wavelet intergrid 

operators as given in section 2, instead of multigrid intergrid operators. 

 

4. Illustrative examples 

       In this section, we present numerical solution of integral and integro-differential equation to 

demonstrate the capability of the proposed scheme using biorthogonal spline wavelet transform 

method. The error function is presented to verify the accuracy and efficiency of the following 

numerical results:
 
 

 
2

max max
1

Error function ( ) ( ) ( ) ( )
n

e i a i e i a i

i

E u t u t u t u t


      

where eu  and au  are exact and approximate solution respectively.  

 

Test problem 4.1 Let us consider the linear Volterra integral equation [28],

 

0

( ) sin( ) ( ) ( )

t

u t t t s u s ds  
      

0 , 1,t s 

                         

(4.1)

 

which has the exact solution 
1

( ) (sin( ) sinh( )).
2

u t t t  The numerical solutions of Eq. (4.1) is 

obtained through the method as explained in section 3 compared with the exact and existing 

method are shown in table 1 and in the figure 1 for N=64. Maximum error and CPU time 

are shown in table 2. 

 

 
 

Table 1. Numerical results of test problem 4.1, for N = 8. 

t MG BSWTM MBSWTM Exact 
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0 0.0000 0.0000 0.0000 0 

0.1428 0.1423 0.1423 0.1423 0.1428 

0.2857 0.2847 0.2847 0.2847 0.2857 

0.4285 0.4271 0.4271 0.4271 0.4286 

0.5714 0.5698 0.5698 0.5698 0.5719 

0.7142 0.7132 0.7132 0.7132 0.7158 

0.8571 0.8577 0.8577 0.8577 0.8609 

1 1.0043 1.0043 1.0043 1.0083 

 

Table 2. Maximum error and CPU time (in seconds) of the methods of test problem 4.1. 

N Method 
maxE  Setup time Running time Total time 

16 

MG 8.72e-04 0.2599 0.0296 0.2895 

BSWTM 8.72e-04 0.0470 0.0107 0.0578 

MBSWTM 8.72e-04 0.0462 0.0030 0.0492 

32 

MG 2.04e-04 0.1722 0.0321 0.2043 

BSWTM 2.04e-04 0.0975 0.0098 0.1073 

MBSWTM 2.04e-04 0.0648 0.0029 0.0677 

64 

MG 4.95e-05 0.1848 0.0334 0.2182 

BSWTM 4.95e-05 0.1385 0.0109 0.1494 

MBSWTM 4.95e-05 0.0894 0.0032 0.0926 

128 

MG 1.21e-05 0.3431 0.0117 0.3548 

BSWTM 1.21e-05 0.2226 0.0310 0.2536 

MBSWTM 1.21e-05 0.1798 0.0041 0.1839 

 
Figure 1. Comparison of numerical solutions with exact solution of test problem 4.1, for N=64. 

 

Test problem 4.2 Next, consider the Volterra integro-differential equations [29] 

  
   

0

'( ) 1 2 sin( ) ( ) , (0) 0

t

u t t t u s ds u    ,  0 1t                      (4.2) 

which has the exact solution ( ) cos( ).u t t t We convert the Volterra integro-differential equation to 

equivalent Volterra integral equation by using the well-known formula, which converts multiple 

integrals into a single integral.  

i.e., 

1

0 0 0 0

1
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t t t t

n nu t dt t s u s ds
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Integrating Eq. (4.2) on both sides from 0 to t and using the initial condition and also converting the 

double integral to the single integral, we obtain 

2

0

( ) ( ) ( , ) ( ) ,

t

u t f t k t s u s ds        (4.3) 

where ( , ) ( )k t s t s   
and ( ) 2sin( ) 2 cos( ).f t t t t t    

The numerical solutions of Eq. (4.2) are presented in table 3 for N = 16 and in figure 2 for N = 64. 

Maximum error analysis and CPU time is shown in table 4.
 

 

Table 3. Numerical results of test problem 4.2, for N = 16. 

t MG BSWTM MBSWTM Exact 

0 0.0000 0.0000 0.0000 0 

0.0666 0.0664 0.0664 0.0664 0.0665 

0.1333 0.1320 0.1320 0.1320 0.1321 

0.2000 0.1958 0.1958 0.1958 0.1960 

0.2666 0.2570 0.2570 0.2570 0.2572 

0.3333 0.3147 0.3147 0.3147 0.3149 

0.4000 0.3681 0.3681 0.3681 0.3684 

0.4666 0.4164 0.4164 0.4164 0.4167 

0.5333 0.4588 0.4588 0.4588 0.4592 

0.6000 0.4947 0.4947 0.4947 0.4952 

0.6666 0.5234 0.5234 0.5234 0.5239 

0.7333 0.5443 0.5443 0.5443 0.5448 

0.8000 0.5568 0.5568 0.5568 0.5573 

0.8666 0.5604 0.5604 0.5604 0.5610 

0.9333 0.5548 0.5548 0.5548 0.5554 

1 0.5396 0.5396 0.5396 0.5403 
 

Table 4. Maximum error and CPU time (in seconds) of the methods of test problem 4.2. 

N Method 
maxE  Setup time Running time Total time 

16 

MG 6.90e-04 0.2644 0.0296 0.2939 

BSWTM 6.90e-04 0.0486 0.0125 0.0611 

MBSWTM 6.90e-04 0.0494 0.0054 0.0548 

32 

MG 1.61e-04 0.1716 0.0307 0.2022 

BSWTM 1.61e-04 0.0700 0.0117 0.0817 

MBSWTM 1.61e-04 0.0623 0.0042 0.0664 

64 

MG 3.91e-05 0.1914 0.0308 0.2222 

BSWTM 3.91e-05 0.1824 0.0122 0.1946 

MBSWTM 3.91e-05 0.1028 0.0038 0.1066 

128 

MG 9.65e-06 0.3804 0.0116 0.3920 

BSWTM 9.65e-06 0.2439 0.0357 0.2796 

MBSWTM 9.65e-06 0.1912 0.0031 0.1943 

 

Test problem 4.3 Next, consider the linear Fredholm integral equation [30], 

  

1

3

0

( ) (6 2exp(1))exp( ) exp( ) ( ) , 0 1u t t t t s u s ds t                                   (4.4) 

which has the exact solution 3( ) .u t t  The numerical solutions of Eq. (4.4) is obtained through the 

method as explained in section 3 compared with the exact and existing method are shown in table 5 

and in the figure 3 for N=64. Maximum error and CPU time are shown in table 6. 
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Figure 2. Comparison of numerical solutions with exact solution of test problem 4.2, for N=64. 

 

Table 5. Numerical results of test problem 4.3, for N = 16. 

t MG BSWTM MBSWTM Exact 

0 -0.0018 -0.0018 -0.0018 0 

0.0666 -0.0016 -0.0016 -0.0016 0.0002 

0.1333 0.0002 0.0002 0.0002 0.0023 

0.2000 0.0057 0.0057 0.0057 0.0080 

0.2666 0.0165 0.0165 0.0165 0.0189 

0.3333 0.0344 0.0344 0.0344 0.0370 

0.4000 0.0612 0.0612 0.0612 0.0640 

0.4666 0.0987 0.0987 0.0987 0.1016 

0.5333 0.1485 0.1485 0.1485 0.1517 

0.6000 0.2126 0.2126 0.2126 0.2160 

0.6666 0.2927 0.2927 0.2927 0.2962 

0.7333 0.3905 0.3905 0.3905 0.3943 

0.8000 0.5079 0.5079 0.5079 0.5120 

0.8666 0.6466 0.6466 0.6466 0.6509 

0.9333 0.8083 0.8083 0.8083 0.8130 

1 0.9950 0.9950 0.9950 1 
 

Table 6. Maximum error and CPU time (in seconds) of the methods of test problem 4.3. 

N Method 
maxE  Setup time Running time Total time 

16 

MG 4.97e-03 0.2854 0.0330 0.3184 

BSWTM 4.97e-03 0.0621 0.0106 0.0727 

MBSWTM 4.97e-03 0.0543 0.0030 0.0574 

32 

MG 1.16e-03 0.2933 0.0308 0.3241 

BSWTM 1.16e-03 0.0666 0.0116 0.0782 

MBSWTM 1.16e-03 0.0665 0.0033 0.0698 

64 

MG 2.82e-04 0.2651 0.0306 0.2957 

BSWTM 2.82e-04 0.1506 0.0107 0.1613 

MBSWTM 2.82e-04 0.1064 0.0045 0.1109 

128 

MG 6.95e-05 0.4965 0.0120 0.5085 

BSWTM 6.95e-05 0.4575 0.0335 0.4910 

MBSWTM 6.95e-05 0.2596 0.0040 0.2636 
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Figure 3. Comparison of numerical solutions with exact solution of test problem 4.3, for N=64. 

 

Test problem 4.4. Next, consider the linear Fredholm integro-differential equation [31], 

  

1

0

''( ) exp( ) ( ) , (0) 1, '(0) 1, 0 1u t t t t su s ds u u t                                   (4.5) 

which has the exact solution ( ) .tu t e   

Integrating the Eq. (4.5) twice w.r.to t and using the initial conditions, we get 
13 3

0

( ) exp( ) ( ) ,
6 6

t t
u t t s u s ds     

Solving this equation, we obtain the numerical solutions of Eq. (4.5) through the present method as 

explained in section 3 compared with the exact and existing methods are shown in table 7 and in the 

figure 4 for N=64. Maximum error and CPU time are shown in table 8. 

 

Table 7. Numerical results of test problem 4.4, for N = 16. 

t MG BSWTM MBSWTM Exact 

0 0.0000 0.0000 0.0000 0 

0.0666 -0.0622 -0.0622 -0.0622 -0.0622 

0.1333 -0.1155 -0.1155 -0.1155 -0.1155 

0.2000 -0.1600 -0.1600 -0.1600 -0.1600 

0.2666 -0.1955 -0.1957 -0.1957 -0.1957 

0.3333 -0.2222 -0.2224 -0.2224 -0.2224 

0.4000 -0.2400 -0.2403 -0.2403 -0.2403 

0.4666 -0.2488 -0.2493 -0.2493 -0.2493 

0.5333 -0.2488 -0.2494 -0.2494 -0.2494 

0.6000 -0.2400 -0.2405 -0.2405 -0.2405 

0.6666 -0.2222 -0.2227 -0.2227 -0.2227 

0.7333 -0.1955 -0.1959 -0.1959 -0.1959 

0.8000 -0.1600 -0.1602 -0.1602 -0.1602 

0.8666 -0.1155 -0.1156 -0.1156 -0.1156 

0.9333 -0.0622 -0.0622 -0.0622 -0.0622 
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Table 8. Maximum error and CPU time (in seconds) of the methods of test problem 4.4. 

N Method 
maxE  Setup time Running time Total time 

16 

MG 2.83e-04 0.2993 0.0295 0.3288 

BSWTM 2.83e-04 0.0463 0.0088 0.0551 

MBSWTM 2.83e-04 0.0498 0.0042 0.0540 

32 

MG 6.63e-05 0.1960 0.0302 0.2263 

BSWTM 6.63e-05 0.0728 0.0102 0.0830 

MBSWTM 6.63e-05 0.0589 0.0046 0.0635 

64 

MG 1.60e-05 0.2054 0.0308 0.2362 

BSWTM 1.60e-05 0.1655 0.0145 0.1800 

MBSWTM 1.60e-05 0.1015 0.0042 0.1057 

128 

MG 3.95e-06 0.3600 0.0121 0.3721 

BSWTM 3.95e-06 0.2226 0.0329 0.2554 

MBSWTM 3.95e-06 0.1905 0.0034 0.1939 

 
Figure 4. Comparison of numerical solutions with exact solution of test problem 4.4, for N=64. 

 

5. Conclusions 

      We proposed a biorthogonal spline wavelet transform method using wavelet intergrid operators 

based on biorthogonal spline wavelet filter coefficients for the numerical solution of integral and 

integro-differential equations. Wavelet intergrid operators of prolongation and restrictions are 

defined, a MBSWTM, has been shown to be effective and versatile. Test problems are justified 

through the error analysis, as the level of resolution N increases for higher accuracy. The numerical 

solutions obtained agree well with the exact ones, as increasing the number N used. In this paper, the 

multigrid method, BSWTM and MBSWTM shows the error’s are same, but the CPU time changes. 

The standard multigrid method and BSWTM converges slowly with larger computational cost as 

compared to MBSWTM ensure such slower convergence with lesser computational cost as shown in 

the tables. The numerical implementation from the tables demonstrates the accuracy of the 

approximations and super convergence phenomena with less CPU time. Hence, the proposed scheme 

is very convenient and efficient than the existing standard methods. 
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